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Mapreduce is a model for parallel data processing that became famous due to ability to process data in 
parallel in a scalable and efficient way. Mapreduce implementations such as Apache Hadoop, Apache Spark, 
Mapreduce-MPI, Phoenix are widely used in a domain of scientific and industrial applications. Companies 
such as Google, Facebook, Amazon rely on Mapreduce for their key applications and services.  
The main difficulty in implementing Mapreduce lies in algorithms that govern how shuffling is performed. 
Shuffle is a procedure that group similar keys obtained from different map processes and feed the result to 
reduce stage, where further processing is done. In this paper we propose a new shuffle method in Mapreduce 
system implemented on UPC language. The method is based on an idea of using shared address space 
implementation of hashmap data structure. 
 
Mapreduce жоғары масштабты жəне тиімділігі арқылы танымал болған параллельді деректерді 
өңдеу үлгісі болып табылады. Mapreduce параллельді деректерді өңдеу үлгісі жоғары масштабты 
жəне тиімділік арқылы танымал болған. Apache Hadoop, Apache Spark, Mapreduce-MPI, Phoenix 
жүзеге асырылған Mapreduce жүйелер ғылыми жəне де коммерциялық қосымшаларда кеңінен 
қолданылады. Google, Facebook, Amazon компаниялардың басты сервистер жəне қосымшалар өзінің 
жұмысында Mapreduce қолданады.  
Mapreduce жүзеге асыру негізгі қиындығы shuffle операциясын орындау алгоритмдерін құру болып 
табылады. Shuffle бұл əртүрлі map процесстерден алынған ұқсас кілттерді топтастыру жəне 
reduce кезеңіне келесі өңдеу үшін жіберу операция болып табылады. Бұл мақалада UPC параллельді 
тілінде жүзеге асырылған Mapreduce жүйесінің жаңа shuffle əдісі ұсынылады. Shuffle əдісі бөлінген 
ғаламдық адрестік қеңістігінде жүзеге асырылған hashmap деректердің құрылымы негізінде жүзеге 
асырылған. 
 
Mapreduce – это модель параллельной обработки данных, которая стала популярной за счет 
способности параллельной обработки данных с высокими показателями масштабируемости и 
эффективности. Такие реализации Mapreduce как ApacheHadoop, ApacheSpark, Mapreduce-MPI, 
Phoenix широко используются как в научных, так и коммерческих приложениях. Основные сервисы и 
приложения в таких компаниях как Google, Facebook, Amazon используют для своей работы 
Mapreduce. 
Основная трудность в реализации Mapreduce заключается в алгоритмах, которые определяют, как 
выполняется операция перетасовки (shuffle). Shuffle – это процедура, которая группирует похожие 
ключи, полученные из разных процессов map, и передает результат на этап reduce, где происходит 
дальнейшая обработка. В этой статье предлагается новый метод тасования данных (shuffle) в 
системе Mapreduce, реализованной на языке UPC. Метод основан на идее использования реализации 
hashmap структуры данных в разделенном глобальном адресном пространстве. 
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Introduction 
Mapreduce is a distributed computing 

model used for parallel computations and data 
processing of large amounts of data in a 
distributed cluster environment. Mapreduce 
model was introduced by Google in 2004 [1]. 
The work in Mapreduce is performed in 3 
stages: 

1. Map 
2. Reduce 
3. Shuffle 
In the Fig. 1 below general workflow of 

Mapreduce model is presented.  

 
Fig. 1. Mapreduce workflow 

 
Mapreduce works by dividing processing 

among parallel processes each of which 
implement map or reduce functions. Different 
processes operate in parallel on different 
chunks of data. Map processes are responsible 
for processing input data and generating pairs 
of key/value elements. Further in shuffle 
phase those pairs of elements are required to 
be delivered and distributed among reduce 
workers. Each reduce worker are responsible 
for processing all the values with the same 
key. Therefore, in a shuffle phase each map 
worker sends keys to reduce workers that are 
waiting for receiving them. After all 
communications are finished each reduce 
worker can continue with executing their 
routines. Reduce workers accept as an input a 
pair of key/{list_of_values}. The functionality 
of reduce is to obtain some result in a form of 
key/value pair derived from the input data. 

The main principles of Big Data 
development can be formulated as follows: 

 Scalability   
 Fault-tolerance 
 Locality of data 
Mapreduce model can be efficiently 

implemented such that all of these properties 
are satisfied. The main examples of such 
implementations include such frameworks as 
Apache Hadoop, Apache Spark, Mapreduce-
MPI [2-4]. 

At the moment such Mapreduce systems 
as Apache Hadoop, Apache Spark, Google 
Mapreduce are widely used as an effective 
means of data processing and analysis. 
Mapreduce is actively used in companies such 
as Google, Yandex, Facebook as the main 
tool for speeding up work and increasing the 
amount of processed data. 

The implementation of Mapreduce 
systems is based on several basic elements 
that ensure the functioning of the entire 
system. These elements are data storage 
mechanisms (distributed file system), 



123 
 

mechanisms for organizing data exchange 
between individual nodes or processes in a 
distributed computing environment, ensuring 
fault tolerance of the system, and organizing 
load balancing between parallel processes. 

Some of the Mapreduce frameworks are 
being developed for specifically targeting 
different hardware architectures. For example, 
MapReduce system called Phoenix 
specifically has been developed for shared-
memory systems [5]. Phoenix uses shared 
memory for the purpose of reducing the 
overheads of data communication and task 
startup latencies. Phoenix has been shown to 
achieve high scalability for different types of 
multiprocessors architectures. Also Phoenix 
has built-in tools to perform scheduling of key 
distribution among threads and have recovery 
mechanisms for faults in performing map and 
reduce tasks. The authors of the paper 
compared Phoenix with P-threads execution 
model which resulted in comparable 
performance for majority of applications. 
Also authors report considerable decrease in 
code size for majority of applications 
compared to P-threads approach. 

Mapreduce has been explored in 
traditional HPC platforms before in [6]. As a 
result authors conclude that Mapreduce can be 
efficiently implemented using MPI with some 
limitations.The approach described in the 
paper works based on application of 
collective non-blocking operations. In the 
map stage MPI_Scatter and on reduce stage 
MPI_Reduce collective functions are used. 
Master-worker model is employed. Master is 
responsible for scheduling computation tasks. 
Subsequently, tasks are executed by worker 
processes. Limitations on reduce function 
imposed by MPI library are the following: 

1) Reduce function must be associative 
2) Number of different keys must be 

known for each process ahead of reduce 
function call  

3) If some key is missing for some 
processes the key value must be assigned 
some identity element value 

Using scalable MPI collective functions 
it is possible to obtain high speed-up. 
Numerous architectures even support 
hardware-optimized collective operations. 

MapReduce is designed to manage and 
handle fault issues transparently. 

Similar work has been done by a research 
team from Sandia National Laboratories, 
USA and described in paper [7]. Their work 
based on implementing Mapreduce using 
MPI. MR-MPI framework has the following 
features: 

1) Inter-process communication based on 
MPI C++ library.   

2) Portability and small size of the library 
3) In-core or out-of-core processing.  
4) Flexible programmability 
5) Python, C, C++ interfaces 
6) Absence of fault-tolerance and data 

redundancy 
The approach presented in paper for data 

distribution among reduce workers has certain 
limitation associated with poor data locality 
due to random shuffling of key/value pairs. 
That randomness leads to higher network load 
due to large number of data movements 
between different processes. However, the 
advantage of random distribution is efficient 
load-balancing among processes. 

Our approach to implement shuffle 
method in Mapreduce system was developed 
in UPC parallel programming language. UPC 
language is an extension for C language for 
high-performance computing on large-scale 
distributed clusters. 

UPC is based on PGAS (Partitioned 
Global Address Space) parallel programming 
model [8]. In PGAS model concurrent threads 
operate on partitioned shared address space. 
Each thread has an access to its own private 
memory and partitioned shared address space. 
Partitioned shared address space is divided 
among threads into non-overlapping regions. 
Each region has an affinity to a particular 
thread. 
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Fig. 2. PGAS memory model 

 
From Fig. 2 it can be seen that shared 

memory region spans the physical memory of 
all computing nodes in a cluster and colored 
areas of shared memory represent memories 
that has affinity to a particular thread.  

In this work we introduce a new 
approach to perform shuffle operation in 
Mapreduce system implemented on UPC 
language based on using hashmap data 
structure. Hashmap is a data structure that 
implements an associative array (mapping 
from keys to values). Hashmap uses a hash 
function that assigns an index to a key from 
which value with specified key can be found. 
Hashmap is very efficient for applications that 
require storing key/value pairs. Amortized 
complexity of read/write operations for 
hashmap data structure is equivalent to ܱሺ1ሻ.  

Choosing a good hash function is 
indispensable for hashmap insert/extract 
operation performance. One of the main 
properties of a good hash function is 
uniformly distributed hash indexes. Non-
uniformity leads to increased number of 

collisions and as a result increased time of 
resolving these collisions.  

Collision resolution methods are used in 
order to avoid mapping of two or more keys 
to a single index value. Separate chaining and 
open addressing are two different methods for 
collision resolution.  

Nowadays it is essential to introduce new 
parallel computing solutions that can enhance 
ability to process the large amounts of data.  

Similar works of developing Mapreduce 
system based on PGAS (partitioned global 
address space) model were presented in the 
literature before []. One approach is based on 
UPC language with idea of using collective 
functions to perform key/value exchange. 
Authors argue that their approach possess 
programmability benefits of parallel code 
development, customizable load distribution, 
target an issue of performance bottlenecks 
leading to better approach of implementing 
Mapreduce in HPC systems. Although, that 
approach has shown good performance results 
the issue of optimized key/value distribution 
still remains unsolved.  
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Implementation of the shuffle phase for Mapreduce based on UPC 
The usual shuffle method implemented in 

many Mapreduce systems works by applying 
hashing to the keys and sending keys to the 
reducer that corresponds to the computed 
hash value. After that all keys are sorted by 
merge-sort algorithm on each reducer. 
Basically, that means that in usual 
implementation of shuffle method keys 
distribution among reducers cannot be 
controlled and optimized. In our approach we 
propose a new method for performing shuffle 
procedure based on using UPC language and 
hashmap data structure implemented on top of 
PGAS memory model.  

The difficulty with implementing 
hashmap data structure in UPC language lies 
in addressing the issue of changing all 
operations on hashmap to operate in shared 
address space. The implementation of 
hashmap data structure is based on using 
shared pointers and UPC memory 
manipulation functions such as upc_memget, 
upc_memput, upc_memcpy. UPC memory 
manipulation functions allow to access and 
change values of variables and memory 
locations which are referenced by shared 
pointers.  

 
  typedef shared struct _hashmap_map 
  { 
  inttable_size; 
  int size; 
  shared []hashmap_element*data; 
  } 
  hashmap_map_global; 
 

Fig. 3.Hashmapstruct definition.    
 

Definition of hashmap structure is 
presented in Fig. 3. This definition include 
size of the hash table table_size, current 

number of elements in hashmap denoted by 
size variable and shared array of hashmap 
elements stored in data variable.    

   
typedefstruct _hashmap_element{ 

  shared []char* key; 
  intin_use; 
  intind; 
  shared []shared_vector* data; 
  int id; 
  }hashmap_element; 
 

Fig. 4.Hashmap_elementstruct definition.    
 

In Fig. 4 definition of hashmap_element 
structure is presented. This structure 
represents a single entry stored in shared array 
data of hashmap structure. Each element of 
the hashmap structure consists of a key and a 
vector of values that correspond to the given 

key. That is, when a new element is written to 
hashmap with an existing key the value will 
be added to a vector of values corresponding 
to that key. In such a way we avoid storing 
multiple entries of the same key in hashmap 
data structure.  

 
 hashmap_map_global hash [THREADS]; 
 hash[MYTHREAD].data =(shared [] hashmap_element
 *)upc_alloc(INITIAL_SIZE * upc_elemsizeof(shared 
hashmap_element)); 
 

Fig. 5. Defining and initializing of shared array of hashmap structures 
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In Fig. 5 hash shared array is defined of 

size equivalent to number of threads, such 
that each entry of that array of hashmap data 
type is in one-to-one mapping with each 
thread. Also second instruction initializes for 
each thread shared array data.  

Hashmap defined in such a way is 
accessible for remote read/write operations 

and therefore allow exchanging key/value 
pairs among different entries in shared array 
of hashmap elements. The described exchange 
method is foundation for implementing 
shuffle approach in our Mapreduce on UPC 
model.       

 

 
Fig. 6. Data exchange model in Mapreduce 

 

The further steps of Mapreduce shuffle 
method implementation in our approach 
involves deciding which threads would 
process which set of keys. For this task we 
rely on optimization strategy based on 
minimizing remote fetching and updating 
operations and distributing computational 
workload among threads with aim to 
uniformly distribute key/value pairs. The 
general scheme how shuffle method is 
implemented in our model can be described 
by the following steps: 

1) Assign each key unique integer 
identifier.  

2) Create a new array of hashmap entries 
that would store in each thread 
<key,list_of_values> pairs. 

3) Perform the task of mapping keys to 
threads according to key indexing from Step 
1. 

4) Perform the task of distributing keys 
among threads according to the obtained 
mapping by copying values of keys from each 
old hashmap to new hashmap created in Step 
2.  

 Following these steps, runtime system 
can perform in parallel reduce function calls 
on each <key,list_of_values> entry of local 
thread`s hashmap entry of shared array 
created in Step 2.  

Such an approach presents a new way of 
organizing Mapreduce shuffle method in a 
UPC language.  

The basic idea of using a globally 
addressable hashmap structure for 



127 
 

implementing Mapreduce technology consists 
of the following ideas: 

1. In the map phase, the intermediate key 
/ value pairs are written to hashmap, which is 
local to the current thread. 

2. At the reduce stage, all values with the 
same key are copied to the thread that will 
perform the reduce operation for this key. 
Thus, since each thread has access to hashmap 
elements of other threads, it can query 
elements with the given key from the other 
hashmap structures. 

3. The read / write operations on 
hashmap are performed in asymptotic 
complexity of ܱሺ1ሻ, which can significantly 
shorten the search time for the desired key. 

4. UPC uses the GasNet communication 
system, which is based on an efficient process 
of transferring and exchanging data between 
computational nodes on the basis of the 
"active messages" protocol during operations 
with memory.  
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