YIAK: 004.421.2:519.16

DATA EXCHANGE MODEL FOR MAPREDUCE SYSTEM IMPLEMENTED ON UPC
LANGUAGE

UPC TUITHJIE XKY3ETE ACBIPBLJIFAH MAPREDUCE KYWECIHIH JEPEKTEP/II
AYBICY YJIT'ICI

MO/IEJIb OBMEHA JAHHBIMMU JIJI1 MAPREDUCE CUCTEMBbI PEAJIM30BAHHON
HA A3BIKE UPC

SHOMANOYV A.S.
AMIRGALIYEYV E.N.
MANSUROVA M.E.
URMASHEY B.A.

Mapreduce is a model for parallel data processing that became famous due to ability to process data in
parallel in a scalable and efficient way. Mapreduce implementations such as Apache Hadoop, Apache Spark,
Mapreduce-MPI, Phoenix are widely used in a domain of scientific and industrial applications. Companies
such as Google, Facebook, Amazon rely on Mapreduce for their key applications and services.

The main difficulty in implementing Mapreduce lies in algorithms that govern how shuffling is performed.
Shuffle is a procedure that group similar keys obtained from different map processes and feed the result to
reduce stage, where further processing is done. In this paper we propose a new shuffle method in Mapreduce
system implemented on UPC language. The method is based on an idea of using shared address space
implementation of hashmap data structure.

Mapreduce acozapvl macuumabmul dcone MUimMOiNiei apKblibl MAHLIMAL 00eAH NAPALIenvoi OepeKkmepoi
eyoey yaeici boavin mabwiiaovl. Mapreduce napanienvoi depekmepdi oHOey Ya2ici Hcoapvl Macumadmol
JicoHe MUIMOLNIK apkwlivl mauviman bonzan. Apache Hadoop, Apache Spark, Mapreduce-MPI, Phoenix
acyseze acvipvinean Mapreduce orcyiienep vlavlmu Jicone 0e KOMMEPYUSTBIK KOCHIMUANApOa KeHiHeH
Konoauwinaovl. Google, Facebook, Amazon xomnanusnapoviy 6acmul cepsucmep dicate KOCbLMULANAP O3iHIY
arcymvicoinoa Mapreduce Kondanaowl.

Mapreduce arcyseze acvipy nezizei Kuvinobiewvl shuffle onepayusicoin opvinoay ancopummoepin Kypy Ooavin
mabvinaovl. Shuffle 6yn apmypni map npoyeccmepoen anvblHEAH YKCAC Kiimmepoi MONMACMbIPY JHCIHE
reduce xesenine Keneci eyoey yuin gicibepy onepayus bonvin maowiiaowvl. byn maxaraoa UPC napanienvoi
mininoe gicyzeze acvipvlizan Mapreduce scyiieciniy ocaya shuffle adici ycoinwvinaovl. Shuffle adici bonineen
anamovix aopecmik Keyicmicinoe dicyseze acvipuvlizan hashmap depexmepOiy KYpulibimbl He2i3iHOe Jicy3eze
ACLIPLLIZAH.

Mapreduce — smo modenv napanienvHou 0b6pabomku OAHHLIX, KOMOPAS CMALA NONYIAPHOU 34 Ccyem
CcnocodHoCmU NApPAIIenbHOU 00pabomKy OAHHLIX C 6bICOKUMU NOKA3AMENAMU Macumadupyemocmu u
agppexmusnocmu. Taxue peanuzayuu Mapreduce rxax ApacheHadoop, ApacheSpark, Mapreduce-MPI,
Phoenix wiupoxo ucnonv3yomes kax 8 HAYUHBIX, MAK U KOMMepYecKux npunodicenusx. OcHosHble cepsucsl u
npunodicenus 6 maxux xomnaunusx kax Google, Facebook, Amazon ucnoavzyiom 0as ceoeil pabomul
Mapreduce.

Ocnosnas mpyonocms 6 peanusayuu Mapreduce 3axmouaemcs 6 aneopummax, KOmopvie onpeoesion, KaxK
svinonHsaemcs onepayusi nepemacosku (shuffle). Shuffle — smo npoyedypa, komopas epynnupyem noxoxcue
KAIOYU, NOTYYEHHble U3 PASHBIX NPOYECco8 map, u nepeodaem pe3yibmam Ha oman reduce, 20e npoucxooum
oanvHetiwas obpabomka. B amoii cmambe npediaeaemcs HO8bl Memod macosanust Oannwix (shuffle) e
cucmeme Mapreduce, peanuzosannoti na sizvike UPC. Memoo ocnogan Ha udee ucnonb308anus peanuzayuu
hashmap cmpyxmypol OaHHbIX 8 PA30eIeHHOM 2100ATbHOM A0PECHOM NPOCMPAHCMEE.

Keywords: Mapreduce, UPC, shuffle, parallel computing
121

Introduction

Mapreduce is a distributed computing
model used for parallel computations and data
processing of large amounts of data in a
distributed cluster environment. Mapreduce
model was introduced by Google in 2004 [1].
The work in Mapreduce is performed in 3

stages:
1]
TR <
1]

Shuffle

1. Map

2. Reduce

3. Shuffle

In the Fig. 1 below general workflow of
Mapreduce model is presented.

Reduce

LS
LS

Fig. 1. Mapreduce workflow

Mapreduce works by dividing processing
among parallel processes each of which
implement map or reduce functions. Different
processes operate in parallel on different
chunks of data. Map processes are responsible
for processing input data and generating pairs
of key/value elements. Further in shuffle
phase those pairs of elements are required to
be delivered and distributed among reduce
workers. Each reduce worker are responsible
for processing all the values with the same
key. Therefore, in a shuffle phase each map
worker sends keys to reduce workers that are
waiting for receiving them. After all
communications are finished each reduce
worker can continue with executing their
routines. Reduce workers accept as an input a
pair of key/{list_of values}. The functionality
of reduce is to obtain some result in a form of
key/value pair derived from the input data.

The main principles of Big Data
development can be formulated as follows:

122

= Scalability

» Fault-tolerance

= Locality of data

Mapreduce model can be efficiently
implemented such that all of these properties
are satisfied. The main examples of such
implementations include such frameworks as
Apache Hadoop, Apache Spark, Mapreduce-
MPI [2-4].

At the moment such Mapreduce systems
as Apache Hadoop, Apache Spark, Google
Mapreduce are widely used as an effective
means of data processing and analysis.
Mapreduce is actively used in companies such
as Google, Yandex, Facebook as the main
tool for speeding up work and increasing the
amount of processed data.

The implementation of Mapreduce
systems is based on several basic elements
that ensure the functioning of the entire
system. These elements are data storage
mechanisms (distributed file system),

mechanisms for organizing data exchange
between individual nodes or processes in a
distributed computing environment, ensuring
fault tolerance of the system, and organizing
load balancing between parallel processes.
Some of the Mapreduce frameworks are
being developed for specifically targeting
different hardware architectures. For example,
MapReduce system called Phoenix
specifically has been developed for shared-
memory systems [5]. Phoenix uses shared
memory for the purpose of reducing the
overheads of data communication and task
startup latencies. Phoenix has been shown to
achieve high scalability for different types of
multiprocessors architectures. Also Phoenix
has built-in tools to perform scheduling of key
distribution among threads and have recovery
mechanisms for faults in performing map and
reduce tasks. The authors of the paper
compared Phoenix with P-threads execution
model which resulted in comparable
performance for majority of applications.
Also authors report considerable decrease in

code size for majority of applications
compared to P-threads approach.
Mapreduce has been explored in

traditional HPC platforms before in [6]. As a
result authors conclude that Mapreduce can be
efficiently implemented using MPI with some
limitations. The approach described in the
paper works based on application of
collective non-blocking operations. In the
map stage MPI_Scatter and on reduce stage
MPI_Reduce collective functions are used.
Master-worker model is employed. Master is
responsible for scheduling computation tasks.
Subsequently, tasks are executed by worker
processes. Limitations on reduce function
imposed by MPI library are the following:

1) Reduce function must be associative

2) Number of different keys must be
known for each process ahead of reduce
function call

3) If some key is missing for some
processes the key value must be assigned
some identity element value

123

Using scalable MPI collective functions
it is possible to obtain high speed-up.
Numerous architectures even support
hardware-optimized collective operations.

MapReduce is designed to manage and
handle fault issues transparently.

Similar work has been done by a research
team from Sandia National Laboratories,
USA and described in paper [7]. Their work
based on implementing Mapreduce using
MPI. MR-MPI framework has the following
features:

1) Inter-process communication based on
MPI C++ library.

2) Portability and small size of the library

3) In-core or out-of-core processing.

4) Flexible programmability

5) Python, C, C++ interfaces

6) Absence of fault-tolerance and data
redundancy

The approach presented in paper for data
distribution among reduce workers has certain
limitation associated with poor data locality
due to random shuffling of key/value pairs.
That randomness leads to higher network load
due to large number of data movements
between different processes. However, the
advantage of random distribution is efficient
load-balancing among processes.

Our approach to implement shuffle
method in Mapreduce system was developed
in UPC parallel programming language. UPC
language is an extension for C language for
high-performance computing on large-scale
distributed clusters.

UPC is based on PGAS (Partitioned
Global Address Space) parallel programming
model [8]. In PGAS model concurrent threads
operate on partitioned shared address space.
Each thread has an access to its own private
memory and partitioned shared address space.
Partitioned shared address space is divided
among threads into non-overlapping regions.
Each region has an affinity to a particular
thread.

| SHARED MEMORY |

y

r A h A

thread 0 thread 1 thread 2 ‘ thread 3
private private private private
memory memory memary memaory

Fig. 2. PGAS memory model

From Fig. 2 it can be seen that shared
memory region spans the physical memory of
all computing nodes in a cluster and colored
areas of shared memory represent memories
that has affinity to a particular thread.

In this work we introduce a new
approach to perform shuffle operation in
Mapreduce system implemented on UPC
language based on wusing hashmap data
structure. Hashmap is a data structure that
implements an associative array (mapping
from keys to values). Hashmap uses a hash
function that assigns an index to a key from
which value with specified key can be found.
Hashmap is very efficient for applications that
require storing key/value pairs. Amortized
complexity of read/write operations for
hashmap data structure is equivalent to 0(1).

Choosing a good hash function is
indispensable for hashmap insert/extract
operation performance. One of the main
properties of a good hash function is
uniformly distributed hash indexes. Non-
uniformity leads to increased number of

124

collisions and as a result increased time of
resolving these collisions.

Collision resolution methods are used in
order to avoid mapping of two or more keys
to a single index value. Separate chaining and
open addressing are two different methods for
collision resolution.

Nowadays it is essential to introduce new
parallel computing solutions that can enhance
ability to process the large amounts of data.

Similar works of developing Mapreduce
system based on PGAS (partitioned global
address space) model were presented in the
literature before []. One approach is based on
UPC language with idea of using collective
functions to perform key/value exchange.
Authors argue that their approach possess
programmability benefits of parallel code
development, customizable load distribution,
target an issue of performance bottlenecks
leading to better approach of implementing
Mapreduce in HPC systems. Although, that
approach has shown good performance results
the issue of optimized key/value distribution
still remains unsolved.

Implementation of the shuffle phase for Mapreduce based on UPC

The usual shuffle method implemented in
many Mapreduce systems works by applying
hashing to the keys and sending keys to the
reducer that corresponds to the computed
hash value. After that all keys are sorted by
merge-sort algorithm on each reducer.
Basically, that means that in usual
implementation of shuffle method keys
distribution among reducers cannot be
controlled and optimized. In our approach we
propose a new method for performing shuffle
procedure based on using UPC language and
hashmap data structure implemented on top of
PGAS memory model.

The difficulty with implementing
hashmap data structure in UPC language lies
in addressing the issue of changing all
operations on hashmap to operate in shared
address space. The implementation of
hashmap data structure is based on using
shared pointers and UPC memory
manipulation functions such as upc_memget,
upc_memput, upc_memcpy. UPC memory
manipulation functions allow to access and
change values of variables and memory
locations which are referenced by shared
pointers.

typedef shared struct _hashmap_map

{

inttable_size;

int size;

shared []hashmap_element*data;

}

hashmap_map_global ;

Fig. 3.Hashmapstruct definition.

Definition of hashmap structure is
presented in Fig. 3. This definition include
size of the hash table table size, current

number of elements in hashmap denoted by
size variable and shared array of hashmap
elements stored in data variable.

typedefstruct _hashmap element{
shared []char* key;

intin_use;
intind;

shared |[]shared vector* data;

int id;

thashmap_element;

Fig. 4.Hashmap_elementstruct definition.

In Fig. 4 definition of hashmap_element
structure is presented. This structure
represents a single entry stored in shared array
data of hashmap structure. Each element of
the hashmap structure consists of a key and a
vector of values that correspond to the given

key. That is, when a new element is written to
hashmap with an existing key the value will
be added to a vector of values corresponding
to that key. In such a way we avoid storing
multiple entries of the same key in hashmap
data structure.

hashmap_map_global hash [THREADS];
hash|[MYTHREAD] .data =(shared [] hashmap_element

*yupc_alloc(INITIAL_SIZE *

hashmap_element)) ;

upc_elemsizeof(shared

Fig. 5. Defining and initializing of shared array of hashmap structures

In Fig. 5 hash shared array is defined of
size equivalent to number of threads, such
that each entry of that array of hashmap data
type is in one-to-one mapping with each
thread. Also second instruction initializes for
each thread shared array data.

Hashmap defined in such a way is
accessible for remote read/write operations

and therefore allow exchanging key/value
pairs among different entries in shared array
of hashmap elements. The described exchange
method is foundation for implementing
shuffle approach in our Mapreduce on UPC
model.

L
—

oy |
I - it —r R |

THREAD O

THREAD 1

THREAD 2 THREAD 3

Fig. 6. Data exchange model in Mapreduce

The further steps of Mapreduce shuffle
method implementation in our approach
involves deciding which threads would
process which set of keys. For this task we
rely on optimization strategy based on
minimizing remote fetching and updating
operations and distributing computational
workload among threads with aim to
uniformly distribute key/value pairs. The
general scheme how shuffle method is
implemented in our model can be described
by the following steps:

1) Assign each key unique
identifier.

2) Create a new array of hashmap entries
that would store in each thread
<key,list_of values> pairs.

integer

126

3) Perform the task of mapping keys to
threads according to key indexing from Step
1.

4) Perform the task of distributing keys
among threads according to the obtained
mapping by copying values of keys from each
old hashmap to new hashmap created in Step
2.

Following these steps, runtime system
can perform in parallel reduce function calls
on each <key,list_of values> entry of local
thread's hashmap entry of shared array
created in Step 2.

Such an approach presents a new way of
organizing Mapreduce shuffle method in a
UPC language.

The basic idea of using a globally
addressable hashmap structure for

implementing Mapreduce technology consists
of the following ideas:

1. In the map phase, the intermediate key
/ value pairs are written to hashmap, which is
local to the current thread.

2. At the reduce stage, all values with the
same key are copied to the thread that will
perform the reduce operation for this key.
Thus, since each thread has access to hashmap
elements of other threads, it can query
elements with the given key from the other

3. The read / write operations on
hashmap are performed in asymptotic
complexity of 0(1), which can significantly
shorten the search time for the desired key.

4. UPC uses the GasNet communication
system, which is based on an efficient process
of transferring and exchanging data between
computational nodes on the basis of the
"active messages" protocol during operations
with memory.

hashmap structures.

Architecture, 13-24.

REFERENCES

1. J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, OSDI'04:
Sixth Symposium on Operating System Design and Implementation, San Francisco, CA,
December, 2004.doi: 10.1145/1327452.1327492

2. Zaharia, M., M. Chowdhury, M.J. Franklin, S. Shenker and I. Stoica, 2010. Spark: Cluster
computing with working sets. Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, Jun 22-25, ACM, USA, pp: 10-10.

3. http://hadoop.apache.org/

4. MapReduce in MPI for Large-Scale Graph Algorithms, S. J. Plimpton and K. D. Devine,
Parallel Computing, 37, 610-632 (2011),d0i:10.1016/j.parco.2011.02.004.

5. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., &Kozyrakis, C. (2007). Evaluating
MapReduce for multi-core and multiprocessor systems. Paper presented at the Proceedings -
International ~ Symposium on High-Performance Computer
doi:10.1109/HPCA.2007.346181

6. Hoefler, T., Lumsdaine, A., &Dongarra, J. (2009). Towards efficient mapreduce using MPI
doi:10.1007/978-3-642-03770-2-30

7. Plimpton, S. J., & Devine, K. D. (2011). MapReduce in MPI for large-scale graph algorithms.
ParallelComputing, 37(9), 610-632. doi:10.1016/j.parco.2011.02.004

8.

W.W. Carlson, J.M. Draper, D.E. Culler, K. Yelick, E. Brooks, K. Warren, Introduction to
UPC and language specification, Technical Report CCS-TR-99-157, IDA Center for
Computing Sciences, 1999.

127

